
Curriculum Map: Computing, Year 13

(All topics of year 12 are also tested at end of Year 13)

 Autumn Spring and Summer

Content
Declarative
knowledge
‘I Know’

**NEA main body of work
1.1.1 Structure and function of the processor
1.1.2 Types of processors
1.2.4 Types of Programming Language
2.2.1 Programming techniques
1.3.2 Databases
1.4.1 Data Types
2.3.1 Algorithms

**NEA- finish
1.3.1 Compression, Encryption and Hashing
2.3.1 Algorithms
1.4.2 Data Structures

1.3.4 Web Technologies
1.2.2 Applications Generation
1.4.3 Boolean Algebra
2.1.5 Thinking concurrently
2.2.2 Computational methods
Exam preparation

Skills
Procedural
Knowledge
‘I know how to’

** NEA main body of work

• Design phase

• Development & Testing phase – 3 iterations

1.1.1 Structure and function of the processor (Year 13 topics)

d) The use of pipelining in a processor to improve efficiency.

1.1.2 Types of processor (Year 13 topics)

b) GPUs and their uses (including those not related to graphics).

1.3.3 Networks (Year 13 topics)

c) Network security and threats, use of firewalls, proxies and encryption.
d) Network hardware.

1.2.4 Types of Programming Language

a) Need for and characteristics of a variety of programming paradigms.

b) Procedural languages.

c) Assembly language (including following and writing simple programs with the
Little Man Computer instruction set). (covered in year 12)

d) Modes of addressing memory (immediate, direct, indirect and indexed).

e) Object-oriented languages with an understanding of classes, objects, methods,
attributes, inheritance, encapsulation and polymorphism (consolidation, as covered
in year 12)

2.2.1 Programming techniques (Year 13 topics)

b) Recursion, how it can be used and compares to an iterative approach.
(consolidation, as (covered in year 12)
f) Use of object-oriented techniques (consolidation, as (covered in year 12)

**NEA- finish

• Beta testing

• Evaluation

2.3.1 Algorithms (last topics)

f) Standard algorithms (Merge sort, Quick sort, Dijkstra’s shortest path algorithm, A*
algorithm).

1.3.1 Compression, Encryption and Hashing

(a) Lossy vs Lossless compression.
(b) Run length encoding and dictionary coding for
lossless compression.
(c) Symmetric and asymmetric encryption.
(d) Different uses of hashing.

1.4.2 Data Structures (Year 13 topics)
(b) The following structures to store data: linked-list, graph (directed and undirected), stack,
queue, tree, binary search tree, hash table.
(c) How to create, traverse, add data to and remove data from the data structures
mentioned above.

1.3.4 Web Technologies (Year 13 topics)
(b) Search engine indexing.
(c) PageRank algorithm.
(d) Server and client-side processing.

1.2.2 Applications Generation (Year 13 topics)
(d) Translators: Interpreters, compilers and assemblers.
 (e) Stages of compilation (lexical analysis, syntax
analysis, code generation and optimisation).
(f) Linkers and loaders and use of libraries.

1.3.2 Databases (Year 13 topics)
(c) Normalisation to 3NF.
(d) SQL – Interpret and modify.
(e) Referential integrity.
(f) Transaction processing, ACID (Atomicity,
Consistency, Isolation, Durability), record locking
and redundancy.

1.4.1 Data Types (Year 13 topics)

h) Floating point arithmetic, positive and negative numbers, addition and
subtraction.

i) Bitwise manipulation and masks: shifts, combining with AND, OR, and XOR.

2.3.1 Algorithms (Year 13 topics)
(a) Analysis and design of algorithms for a given situation.
(b) The suitability of different algorithms for a given task and data set, in terms of
execution time and space.
(c) Measures and methods to determine the efficiency of different algorithms, Big
O notation (constant, linear, polynomial, exponential and logarithmic complexity).
(d) Comparison of the complexity of algorithms.
(e) Algorithms for the main data structures, (stacks, queues, trees, linked lists,
depth-first (post-order)
and breadth-first traversal of trees).
f) Standard algorithms (Merge sort, Quick sort, Dijkstra’s shortest path algorithm,
A* algorithm).

1.4.3 Boolean Algebra (Year 13 topics)
(c) Use the following rules to derive or simplify
statements in Boolean algebra: De Morgan’s Laws, distribution, association, commutation,
double negation.
(e) The logic associated with D type flip flops, half and full adders.

2.1.5 Thinking concurrently
(a) Determine the parts of a problem that can be tackled at the same time.
(b) Outline the benefits and trade-offs that might result from concurrent processing in a
particular situation.

2.2.2 Computational methods
(a) Features that make a problem solvable by computational methods.
(b) Problem recognition.
(c) Problem decomposition.
(d) Use of divide and conquer.
(e) Use of abstraction.
(f) Learners should apply their knowledge of:
•• backtracking
•• data mining
•• heuristics
•• performance modelling
•• pipelining
•• visualisation to solve problems.

Strategies
Conditional
Knowledge
‘I know when to’

Why and which tasks are GPUS suited for?
What kind of architectures support parallel processing?
How to minimise, or preventing threats to system security / cybercrime?
How to use indexing to optimise the searching for data?
How problems that arise from transaction processing can be reduced using ACID
rules and record locking.
What kind of programming problems lend themselves to the object-oriented
paradigm and which one lend themselves to procedural?
How the best case, average case and worst-case complexities of algorithms can be
used to decide which ones to se for given scenarios and data structures.

Justify the best data structures to use for given problems based on their behaviour and
traversal mechanisms.
Whether to use lossy or lossless compression for given media type (e.g. photos, videos,
audio etc.)
Whether run length or dictionary encoding is best for a given scenario.
Whether hashing or encryption is the best protection technique for a given detail that
needs to be stored.
Be able to recommend the benefits and trade-offs that are brought from concurrent
processing, when applied to different scenarios

Key Questions Understand the purpose of GPUs and what applications they are used for
(candidates need to understand how GPUs are used to aid graphics, but also other
applications for example their use in modelling, data mining, etc.). Candidates
should understand the benefits and using GPUs and why they are suited to certain
tasks (specialist instructions, multiple cores and SIMD processing).

Understand the behaviour of linked-lists, graphs, stacks, queues, trees, binary search trees
and hash tables.

Be aware of how the aforementioned data structures can be implemented. We would
recommend a general understanding of these principles that can be applied to a given
scenario rather than trying to memorise code patterns.

Candidates should have experience of implementing these structures in a variety of
contexts, for example through a procedural program, through a different data structure and

Understand that parallel processing can be achieved through different (i.e. multiple
processors in the same computer or distributed across multiple cores in a CPU or
GPU).

What are the security issues and threats involved with networked computers?
Candidates need to be aware of threats such as hackers, viruses, unauthorised
access, denial of service, spyware, SQL injection, phishing and pharming.
Candidates need to know about ways of minimising, or preventing these threats for
example firewalls, secure passwords, anti-virus, anti-spyware etc.

What are the different hardware required to connect to and/or build a network
(e.g. modem, router, cable, NIC, Wireless Access Points, hub, switch etc)?
Candidates need to understand the purpose of the hardware.

How to use Normalisation to produce a suitable database schema and explain the
benefits of doing so.

Be able to normalise up to 3NF. Candidates should know and be able to apply the
criteria for 1NF, 2NF and 3NF.

Discuss a range of methods for capturing data (such as forms, OCR, OMR and
sensors) selecting data (such as Query By Example and SQL), managing data (such
as changing data by manipulating it – e.g. arithmetic functions, adding, editing,
deleting the data) and exchanging data (with commons formats such as CSV and
JSON).

Be able to discuss/justify suitable methods as part of a more open question.
Candidates need to understand the need to interrogate data within a database.
Candidates should understand the purpose of indexing in a database and the
benefits of using indexing to optimise the searching for data. Candidates need to
have experience of a range of methods for capturing data (such as forms – what do
they collect, what do they look like - data mining, where does the data come from,
how is it collected and analysed), selecting data (such as how to produce QBEs –
adding fields, tables, criteria, sorting - selecting through Boolean expressions –
AND, OR, NOT), managing data (such as changing data by manipulating it – e.g.
arithmetic functions - , adding, editing, deleting the data) and exchanging data
(such as methods of transferring data – electronic i.e. memory stick, e-mail, and
non-electronic e.g. paper based - appropriate formats for the transfer of data and
communication mediums to transfer data – such as the structure, is it in a table or
a list).(such as forms, data mining), selecting data (such as producing QBEs,
selecting through Boolean expressions), managing data (such as manipulation,
adding, editing, deleting) and exchanging data (such as methods of transferring
data, appropriate formats for the transfer of data and communication mediums to
transfer data).

Candidates should understand what is meant by transaction processing, and
scenarios where transaction processing takes place. Candidates should understand
the problems that arise from transaction processing, and how these can be
overcome. Candidates should understand the ACID rules for transaction processing,
and why databases should be built to these standards. Candidates should

through an object-oriented approach. Candidates need to be able to read, trace and write
code to implement features of these data structures.

Understand the need for compression, especially when transferring data via the Internet.
Candidates need to understand the difference between lossy and lossless compression, and
the benefits and drawbacks of each type. Candidates need to be able to recommend a type
of compression for a given scenario.

Candidates need to understand how run-length encoding can reduce the size of a file for
example with a text file or image. Candidates should understand how dictionary coding
works by substituting entries with a unique code. Candidates should have practical
experience of using these algorithms with small example files.

Candidates should understand the need for encryption. Candidates should understand how
symmetric and asymmetric encryption work to encrypt and decrypt data.

Candidates should understand the need for and purpose of using hashing algorithms to
store data.

Candidates should be aware of different uses for hashing, such as the storing of passwords.

Understand the purpose of HTML, CSS and JavaScript. Candidates should have experience
of writing webpages using HTML, CSS and JavaScript.

Be able to read, write, amend and interpret code using HTML, CSS and JavaScript.

Candidates should understand how and why search engine results are indexed. They should
understand how PageRank ranks these results. Candidates should understand how page
rank works at a high level.

Candidates need to understand the difference between server and client-side processing,
and should be aware of examples (for example JavaScript code vs PHP code) of processing
on both sides. Candidates should be aware of the benefits and drawbacks of both types of
processing.

What are the De Morgan’s law, and be able to apply these to a Boolean statement.
Candidates should have experience of manipulating and simplifying Boolean statements
using these rules of distribution, commutation, association and double negation.

Candidates need to understand the purpose and principles of D type flip flops and how and
where they are used in a computer. They should be able to recognise how they can be
triggered by a clock pulse (see practice paper 2 for an example). Candidates are not
expected to memorise the logic gates that make up a D-type flip flop.

Candidates need to understand the purpose and function of an adder circuit, and the
difference between a half and full adder. They should be able to recognise and draw the
logic gates and truth tables for full and half adders.

Understand that there are a range of possible solutions to a task, and that these algorithms
may be different in respect to their execution time and the amount of memory they make
use of. Candidates need to be able to compare different algorithms for a given data set and
demonstrate an understanding of which is more efficient in terms of speed and/or memory.
Candidates need to be able to compare the use of one or more algorithms against several

understand how record locking prevents the overriding of data, and understand
how record locking takes place.

Understand the need for normalised floating-point numbers. Candidates should be
able to normalise a floating-point number.

Be able to perform addition and subtraction floating point arithmetic including
addition and subtraction of both positive and negative numbers.

Be able to perform right and left logical shifts. Candidates should understand the
effect of right and left shifts on binary numbers.

Understand the purpose of using masks with bitwise operators, and should have
experience of applying masks using AND, OR and XOR.

Understand that there are a variety of types of programming paradigms such as
procedural, OOP, low-level, and that each has its strengths and weaknesses in
specific scenarios, topics or areas.

Candidates need to have knowledge and experience of using a procedural
programming language for example Python, VB.NET etc. Candidates need to be
experienced in using procedural programming features such as (but not limited to)
variables, constants, selection, iteration, sequence, subroutines, string handling,
file handling, Boolean and arithmetic operators. Candidates need to be able to
read, trace, amend and write procedural program code.

What is the purpose and need for assembly language. They should be able to read,
write, trace and amend programs written in the Little Man Computer language.

Candidates need an understanding of addressing, which should be integrated with
assembly language. Candidates should have experience of using immediate, direct,
indirect and indexed addressing in the writing, reading and tracing of programs
written in assembly language.

Candidates need to understand object-oriented code (as specified in the
pseudocode guide). They need to understand classes, objects, attributes and
methods. They need to understand the difference between private and public
attributes and methods. Candidates need to understand encapsulation and the use
of get and set methods to access private attributes. Candidates need to understand
the purpose and principles of inheritance. Candidates need to understand
polymorphism and how it can be used within a program. Candidates need to be
able to read, trace, amend and write code that makes use of these object-oriented
techniques.

Understand how the efficiency of an algorithm is measured using Big O notation.
Understand the meaning of constant, linear, polynomial, exponential and
logarithmic complexity. They need to be able to recognise and draw each of these
complexities of using a graph and be able to read and write the notation.

different data sets, to determine how they will differ in their use of memory and speed of
execution.

How Dijkstra’s shortest path algorithm works. Candidates need to be able to calculate the
shortest path in a graph or tree using Dijkstra’s shortest path algorithm. Candidates need to
be able to read and trace code that performs Dijkstra’s shortest path algorithm.

How the A* algorithm works. Candidates need to be able to calculate the shortest path in a
graph or tree using the A* algorithm. Candidates need to be able to read and trace code
that performs the A* algorithm.

Understand what is meant by thinking concurrently. They need to be able to work out
which parts of a program can be developed to take place (be processed) at the same time,
and which parts are dependent on other parts.

Candidates need to understand the benefits and trade-offs that are brought from
concurrent processing, and be able to apply these to a given scenario.

How concurrent processing could be applied to a specific program, why it would be applied
to that program, and what problems might arise from using it.
Understand that there are a number of stages involved in compilation.

How lexical analysis works and how the code is converted into tokens with the removal of
unnecessary elements (e.g. comments and whitespace).

How syntax errors are identified and reported at the end of the syntax analysis. Candidates
need to understand how the abstract syntax tree will be fed into the next stage of code
generation, and that the object code is then created. Candidates need to understand why
optimisation is important and how the results of lexical analysis feeds into syntax analysis,
and how the tokens are checked to ensure they meet during (and after) code generation.

What code libraries are, how they are used and the benefits and drawbacks from using
libraries. Candidates should have experience of using libraries to write programs.
Candidates should understand how libraries are used during compilation, and how linkers
and loaders are used to combine the code and library code into the final executable file.

Be able to determine if a problem can be solved using computational methods, such as
decomposition, abstraction, calculations, storage of data.

Be able to recognise a problem from a description of a scenario, decompose the problem
and use abstraction to design a solution.

Understand how divide and conquer can be used within a task to split the task down into
smaller tasks that are then tackled. Candidates also need to identify how tasks can be
carried out simultaneously to produce a solution.

What is the purpose of backtracking within an algorithm, for example when traversing a
tree? Candidates need to be able to read, trace and write code that makes use of
backtracking for a given scenario.

Candidates need to know the best- and worst-case complexities for the searching
and sorting methods. Candidates need to understand the difference between best
case, average case and worst-case complexities and how and why these can differ
for an algorithm.

Understand a tree structure, both binary and multi-branch trees. Candidates need
to be able to add and remove data to/from a tree. Candidates need to be able to
read, trace and write code to implement a tree structure (including adding and
removing items). Candidates need to understand how a tree can be implemented
using a different data structure, such as a linked list.

Why and how trees are traversed. Candidates need to understand how a depth-
first (post-order) traversal works, and be able to perform the traversal on a tree.
Candidates need to be able to read, trace and write code for a post-order traversal.
Candidates need to understand how a breadth-first traversal works, and be able to
perform the search on a tree. Candidates need to be able to read, trace and write
code for a breadth-first traversal on a tree.

Why is a linked list a dynamic data structure? Candidates need to be able to add,
remove and search for data to/from/in a linked list. Candidates need to be able to
read, trace and write code to implement a linked list (including adding, removing
and search for items).

Understand the need for searching and sorting algorithms. Candidates need to
understand pre-conditions required to perform a specific algorithm.

How a merge sort works and be able to perform a merge sort on a set of data.
Candidates need to be able to read, trace and write code to perform a merge sort.

How a quick sort works and be able to perform a quick sort on a set of data.
Candidates need to be able to read, trace and write code to perform a quick sort.

What is meant by data mining, and how data mining is used in a situation. Candidates need
to understand the complexities within data mining and how a program will search for and
interrogate the data.

What is meant by heuristics, and how they can be used within a program (for example the
A* algorithm). Candidates should have some experience of programming a simple heuristic
and be able to apply their knowledge to a given scenario to explain the purpose and
benefits of using heuristics in a solution.

What are the principles, and purpose of performance modelling, and how it is used in the
production of software?

What is pipelining and how it is used within programming (for example the result from a
process feeds into the next process).

How visualisation can be used to create a mental model of what a program will do or work,
and that from this they can plan what is going to happen or what they will need to do.

Assessment
topics

September: Year 13 baseline test / Y12 PPE re-sit (as appropriate)
Progress test(s) at various points

Progress test(s) at various points
Pre-PPE tests
Y13 PPEs (Feb)
Progress tests

Cross curricular
links/Character
Education

Maths, Electronics, English language
Problem solving,
Resilience
Mirroring the practices in the real world of software development

