Curriculum Map: Mathematics Year 11 Foundation Tier

	Autumn	Autumn	Spring	Spring	Summer	Summer
	1	2	1	2	1	2
Content	<u>Sequences</u>	Direct and Inverse Proportion	Transformations	Functions and Graphs	Exact Calculations	Public
	Generate terms of a	Equivalent ratios	Reflection	Functions	Exact calculations	exams
Declarative	sequence	Division in a given ratio	Rotation	Polynomial functions	Calculations and	
knowledge	<i>n</i> th term of a linear	Ratios and fractions	Translation	Graphs of equations and	estimations of	
	sequence	Direct proportion		functions	powers and roots	
'l Know'	Special sequences	Inverse proportion	Similar Figures		Exact trigonometric	
			Congruent triangles	Vectors	values	
	Compound units	<u>Graphs</u>	Similar triangles	Vector arithmetic		
	Speed	Straight line Graphs	Enlargement	Column vectors		
	Density	Areas	Similar shapes			
		Gradients	Volumes and surface area calculations			
	Equations and	Graphs of real-world contexts				
	Inequalities					
	Linear equations in one					
	unknown					
	Inequalities in one					
	variable					
Skills	Sequences	Direct and Inverse Proportion	<u>Transformations</u>	Functions and Graphs	Exact Calculations	
	Generate a sequence by	Find the ratio of quantities in the	Identify lines of symmetry in triangles,	Identify intercepts of graphs of	Use fractional	
Procedural	spotting a pattern or	form <i>a: b</i> and simplify.	quadrilaterals and other polygons.	quadratic functions.	multiples in exact	
Knowledge	using a term-to-term rule	Find the ratio of quantities where		Use symmetry to identify the	calculations without	
	given algebraically or in	the parts are given in different	Reflect a simple shape in a given vertical,	turning point of a graph of a	a calculator.	
'l know	words.	units.	horizontal or 45° diagonal mirror line.	quadratic function.		
how to'		Find the ratio of quantities in the	Identify a mirror line from a simple shape	Find algebraically the roots of a	Recap Mensuration	
	Find a position-to-term	form 1: <i>n</i> .	and its image under reflection. Use the co-	quadratic equation.	formulae.	
	rule for simple arithmetic		ordinate grid.	Sketch graphs of quadratic		
	sequences algebraically	Given the ratio of the parts, split		functions, identifying the	Use multiples of π in	
	and describe more	a quantity into two parts.	Identify rotational symmetry in triangles,	turning point by symmetry.	exact calculations	
	complex sequences in	Express as a ratio the division of a	quadrilaterals and other polygons.		without a calculator.	
	words.	quantity into two parts.		Recognise and sketch graphs of	Recap	
	Find the <i>n</i> th term of a	Civer the ratio of the two	Rotate a simple shape clockwise or	simple polynomial and	Circumference, Area	
	linear sequence.	Given the ratio of the two	anticlockwise through a multiple of 90	reciprocal graphs.	and volume formulae	
	Pocognico coguenese ef	from another	degrees about a given centre of rotation.	Interpret where expressions		
	triangular square and		rotation from a simple shape and its image	simple expressions as functions	calculations with a	
	cubo numbors, and simple	Interpret a ratio of two parts as	under rotation	with inputs and outputs	calculations <mark>with</mark> d	
	arithmetic progressions	fractions of a whole		Paview the four operations and		
	Becognice sequences		Lise a column vector to describe a	RIDMAS in the context of		
	necognise sequences	Solve problems involving	translation of a simple shape	function machines		
	presented	quantities in direct proportion				

diagrammatically and	and recognise a proportionality	Perform a specified translation given as a	Interpret the result of applying	Know the exact	
tabulate results.	constant. Use a proportionality	column vector.	successive functions on an	values of sin θ and	
	symbol and constant.		initial input to find the final	$\cos \theta$ for $\theta = 0^{\circ}$, 30° ,	
	Recognise that if <i>y</i> = <i>kx</i> , where <i>k</i>	Similar Figures	output as a review of BIDMAS.	45°, 60° and 90°.	
	is a constant, then y is	Prove that two triangles are congruent			
Compound units	proportional to x.	using the cases: 3 sides (SSS), 2 angles and	Define sequences as a set of	Know the exact	
Use and convert simple		the included side (ASA), 2 sides and the	function machine operations	values of tan θ for	
compound units (e.g. for	Solve simple word problems	included angle (SAS) and right angle,	and interpret given function	θ = 0°, 30°, 45° and	
speed, rates of pay and	involving quantities in inverse	hypotenuse, side (RHS).	machines to generate	60°.	
unit pricing).	proportion or simple algebraic	Apply congruent triangles in calculations	sequences.		
Know and apply standard	proportions.	and simple proofs		Use exact	
compound measurement	Solve problems involving		Use tables of values to plot	trigonometric values	
formulae:	quantities in inverse proportion	Identify similar triangles. Prove that two	graphs of linear and quadratic	in simple situations.	
speed = distance ÷ time,	and recognise a proportionality	triangles are similar.	functions.		
density = mass ÷ volume	constant. Use a proportionality	Use similarity and ratios to determine			
	symbol and constant.	missing sides or scale factors.	Use tables of values to plot		
Equations and	Recognise that if $y = k/x$, where k	Enlarge a simple shape from a given centre	polynomial graphs.		
Inequalities	is a constant, then y is inversely	using a positive integer scale factor.			
Recap linear equations	proportional to x.		Use a table of values to plot		
including those with the		Use x- and y- coordinates in plane	complex reciprocal graphs.		
unknown on both sides of	<u>Graphs</u>	geometry problems, including			
the equation.	Review $y = mx + c$. Find the	transformations.	Use a table of values to plot		
	gradient and y-intercept from a		other polynomial graphs.		
Recap linear equations	straight line graph.	Identify the centre and positive integer			
including those with	Find $y = mx + c$ from one point	scale factor of an enlargement of a simple	<u>Vectors</u>		
brackets and the	and the gradient and from two	shape and perform such an enlargement on	Understand addition of vectors.		
unknown on both sides of	points.	a simple shape.	Understand subtraction of		
the equation.		Enlarge a simple shape from a given centre	vectors.		
	Revision of areas of rectilinear	using a positive fractional scale factor.			
Understand and use the	shapes. Find area of shape		Recognise that subtracting a		
symbols $<$, $>$, \geq , \leq and =.	defined by lines on graph.	Identify the centre and scale factor	vector is the same as the		
	Find distance between points on	(including fractional scale factors) of an	addition of the negative vector.		
Represent inequalities on	a graph. Use Pythagoras'	enlargement of a simple shape and			
a number line using the	Theorem to find perimeter of	perform such an enlargement on a simple	Understand scalar		
conventional notation of	shape defined by lines on graph.	shape.	multiplication of vectors.		
solid or open dots.					
	Find the gradient for conversion	Apply similarity to calculate unknown	Represent a 2-dimensional		
Solve linear inequalities in	charts and link gradient with ratio	lengths in similar figures.	vector as a column vector.		
one variable, representing	and proportionality.				
solutions on a number	Interpret straight line gradients	Review of Volume and Surface Area	Draw column vectors on a		
line using the	as rates of change including	formulae.	square or coordinate grid.		
conventional notation.	velocity as the gradient of a	Compare lengths, areas and volumes using			
	displacement-time graph.	ratio notation and scale factors			
	Construct and interpret graphs in	Calculate missing lengths, area or volumes			
	real-world contexts.	of similar shapes or solids.			

Strategies	Sequences	Direct and Inverse Proportion	Transformations	Functions and Graphs	Exact Calculations
	Study sequences from a	Solve ratio and proportion	Using concise mathematical language	Present clear chain of reasoning	Construct chains of
Conditional	range of real-life contexts	nrohlems	construct a chain of reasoning to describe	in words and on graphs to	reasoning to achieve
Knowledge	representing solutions in	problems.	the transformations from object to image	achieve stated (x, y)	a given result for a
Knowledge	verds pictorially	Understand the relationship	the transformations normobject to image.	a contraction (x, y)	a given result for a
(Lknow	graphically and	between ratio and linear	Determine a single transformation that will	coordinates	
when to'	graphically and	between ratio and linear	Determine a single transformation that will	Define mules with function	Involving π , surds or
when to	algebraically.	functions.	successfully ma an object to its image, as	Define rules with function	exact trig ratios, with
		A 1 11 1 1 1 1 1	previously defined by a series of	machines to generate results.	or without a
	<u>Compound units</u>	Assess whether a relationship is	transformations.		calculator.
	Perform calculations	one of inverse proportion by			
	involving speed and	determining whether the stated	Make links with coordinates and equations		Make and use
	density in problem solving	values pairs multiply to give a	of straight lines.		connections between
	contexts.	constant.		<u>Vectors</u>	exact calculations
			<u>Similar Figures</u>	Use diagrams and vector	and surds within
	Equations and		Construct a chain of reasoning to describe	notation to clearly present	different parts of
	Inequalities	<u>Graphs</u>	the transformations from object to image	arguments and simple proofs.	mathematics, for
	Explain the meaning of	Recognise and interpret graphs	using concise mathematical language.		instance solving right
	inequality intervals	that illustrate direct and inverse		Use vector addition to solve	angled triangle
	represented on a number	proportion.	Make links to area problems involving	problems of repeated	problems where the
	line.		enlargement on coordinate grid.	translation.	lengths are given as
					simple surd
	Form algebraic		Construct chain of reasoning to achieve a		expressions.
	inequalities in order to		given change in length, area or volume.		
	solve problems set in a				
	range of contexts.				
	5				
Examples	1) The first five terms of	1) Simplify the ratio 50 cm : 1.5 m	1) Describe fully the single transformation	1) Draw the graphs of	1) Find the length of
of Key	an arithmetic sequence		that maps triangle A onto triangle B.	a) $y = 2x + 3$,	the hypotenuse in a
Questions	are 2, 9, 16, 23 and 30.				right angled triangle
	Find, in terms of n, an	2) If it takes 12 men 4 days to	³⁹	b) $y = \frac{1}{(1-x)^2}$	where one angle is
	expression for the <i>n</i> th	plant 100 trees, how long would	6	(x+1)	60° and the adjacent
	term of this sequence.	it take the 12 men to plant 150	4		side is 3cm.
		trees?	3 B	2)	
	2) Here is a sequence of			(a) Complete the table of values	2) Work out the
	patterns made from grey			(a) complete the table of values for $y = x^2 + x = 2$	volume of the
	counters.			y - x + x - 2.	cylinder. Give your
				(b) On the grid draw the graph	answer in terms of π .
	Here is a sequence of patterns made from grey counters.			of $y = x^2 + x^2$	
	• • • • • •			y = x + x - 2.	
	work out the total				7 m
	number of counters to				6m ↓
	make pattern number 10.				

	 3) A car travels a distance of 230 miles in 4 hours and 15 minutes. Work out the average speed of the car, in miles per hour. Give your answer to 1 decimal place. 4) Solve 4x ≤ x + 6 Show your answer on a number line. 	 3) Find the equation of line L 4) Emily drove to the beach. She stayed at the beach and then she 	2) The two triangles ABC and PQR are mathematically similar. Calculate the length PR. $ \int_{26 \text{ cm}}^{C} \int_{8 \text{ cm}}^{B} \int_{B}^{R} \int_{p}^{45 \text{ cm}} \int_{12 \text{ cm}}^{45 \text{ cm}} Q $	3) Write as a column vector i) a + b ii) 2 a + 3 b $a = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ 4) Find, in terms of <i>a</i> , the vector \overrightarrow{AD}		
		drove back home. Here is Emily's travel graph. $\int_{1}^{0} \int_{1}^{0} \int_{1}^$				
Assessment topics	Mini assessments of each topic studied	Autumn PPEs (all topics studied thus far)	Feedback on autumn PPEs Mini assessments of each topic studied	Spring PPE (all topics)	Completion of feedback from of Spring PPEs	
Cross curricular links/ Character Education	Music - links between mathematical sequences and rhythm patterns Science – speed and density calculations PE – awareness of speed and rates such as kilometres per hour	Use of graphs in ICT, Geography and Science Direct and Inverse proportion used to derive scientific formulae	Transformations are used in Art through cubism and tessellations by Escher Design Technology uses similarity and scale in planning ideas	In Music , sonata and symphonic form can be represented graphically Science – graphs of waves and wave equation calculations Science – vectors linked to resultant force		