	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Content	Indices and Standard	Algebraic Solutions of	<u>Surds</u>	Organising, Presenting	Simultaneous Equations	Circles, Spheres and
	Form	Equations		and Analysing Data		<u>Pyramids</u>
Declarative			 Simplify expressions 		 Linear simultaneous 	
knowledge	 Index notation 	 Solving linear equation 	(including expanding	 Time series graphs 	equations	Area and circumference
	 Estimating powers and 	with one unknown	brackets) with surds	 Cumulative frequency 	 Quadratic simultaneous 	of circles
'I Know'	roots	 Solving quadratic 	 Rationalise the 	Box plots	equations	 Sector area and arc
	 Laws of indices 	equations	denominator		 Forming and solving 	length
	 Writing numbers in 			Bivariate Data	simultaneous equations	• Volume of cylinders,
	standard form	Data Collection and	Congruent and Similar			spheres and pyramids
	 Calculations with 	Sampling	<u>Shapes</u>	 Scatter diagrams 	Graphical Solutions to	• Surface area of cylinders,
	numbers in standard form			Correlation	Equations	spheres and pyramids
		Populations and samples	Identify congruent	 Lines of best fit 		
	Algebraic Manipulation	 Averages and range 	triangles		Solve linear equations	Probability
		Construct charts for	 Identify similar triangles 	Fractions and Decimals	graphically	
	 Simplifying expressions 	categorical data	• Compare lengths, areas		Approximate roots of a	Relative frequency
	 Expanding brackets 	(trequency tables, bar	and volumes using scale	 Simplifying fractions and 	curve with a straight line	Sample spaces
	 Factorising expressions 	charts, pie charts and	factors	equivalent fractions		• Enumeration
	 Completing the square 	pictograms)	Dath an an of The same	Fraction arithmetic	Percentage Change	 Venn diagrams
	 Substitution 	• Construct charts for	Pythagoras Ineorem	Algebraic fractions		Probability trees
		ungrouped numerical data	• Find missing sides in	 Decimal arithmetic 	Compound and simple interact	
	Proofs and Formulae	(vertical line charts)	rind missing sides in right angled triangles	Converting recurring	interest	Constructions and Loci
		Compound Units	• Apply Dythogoros'	decimals to fractions	• Exponential growth and	
	• Formulate algebraic		• Apply Pyllidgoras		uecdy	Perpendicular and angle
	expressions	Convert between		Accuracy and Bounds	Bearings and Scale	Disector
	Change the subject of a	different units of	Trigonometry	Letter an and letter here t	Drawings	Perpendicular from a
	Tormula	measurement	<u>Inscribinetry</u>	• Upper and lower bounds	Diawings	point to a line
	Algebraic terminology	Convert compound units	• Find missing sides and	Error intervals	Measure and draw	• Identity the loci of a set
	and proofs	(speed, density, pressure	angles in right angled	Problem solving with	bearings	orpoints
		rates of change and	triangles	upper and lower bounds	Calculate bearings	
		pricing)	Use trigonometry to		Construct and internret	
		1. 2	solve problems		scale drawings	
		Solving Linear Inequalities	Exact trigonometric			
			values			
		 Solve inequalities with 				
		one unknown				
		Represent inequalities				
l		on a number line				

Curriculum Map: Year 10 Mathematics (Higher tier pathway)

Skills	Indices and Standard	Algebraic Solutions of	Surds	Organising, Presenting	Simultaneous Equations	Circles, Spheres and
	<u>Form</u>	Equations		and Analysing Data		<u>Pyramids</u>
Procedural			 Use surds in exact 		 Manipulate and solve 	
Knowledge	 Write numbers using 	 Solve linear equations in 	calculations without a	 Design tables to classify 	two linear simultaneous	 Find the circumference
	index notation.	one unknown.	calculator.	data.	equations in two variables	and area of a circle.
'I know how	 Use negative indices to 	 Solve linear equations 	 Simplify expressions 	 Interpret and construct 	algebraically.	 Find the arc length of a
to'	represent reciprocals.	with the unknown on both	involving surds.	line graphs for time series	 Set up and solve 	sector.
	 Use fractional indices to 	sides (including with	 Expand brackets 	data and identify trends	simultaneous equations in	• Find the area of a sector.
	represent roots and	brackets and fractions).	involving surds.	such as seasonal	mathematical and non-	 Given the arc
	combinations of powers	 Set up and solve linear 	 Rationalise the 	variations).	mathematical contexts.	length/area of a sector,
	and roots.	equations in mathematical	denominator.	 Construct cumulative 	 Manipulate and solve 	find the radius/diameter of
	 Estimate powers and 	and non-mathematical		frequency diagrams, and	two simultaneous	the circle.
	roots.	contexts.	Congruent and Similar	use them to estimate the	equations in two variables	 Calculate the surface
	 Apply the rules of 	 Solve quadratic 	<u>Shapes</u>	median, upper quartile	algebraically, including	area and volume of
	indices.	equations through		and lower quartile.	examples in which one	cylinders, spheres,
	 Interpret and order 	factorising.	 Prove that two triangles 	 Construct and interpret 	equation is a quadratic or	pyramids and cones.
	numbers expressed in	 Solve quadratic 	are congruent using the	box plots.	examples which result in a	
	standard form.	equations through	cases SSS, ASA, SAS and		quadratic).	Probability
	 Convert numbers to and 	completing the square.	RHS.	Bivariate Data		
	from standard form.	 Solve quadratic 	 Apply knowledge of 		Graphical Solutions to	 Use the 0 – 1 probability
	 Use a calculator to 	equations using the	congruent triangles in	 Plot and interpret scatter 	Equations	scale as a measure of
	perform calculations with	quadratic formula.	calculations and simple	diagrams for bivariate		likelihood of random
	numbers in standard form.		proofs.	data.	 Use a graph to find the 	events.
	 Without a calculator, 	Data Collection and	 Identify and prove that 	 Recognise and interpret 	approximate solution of a	 Analyse and calculate the
	add, subtract, multiply and	Sampling	two triangles are similar.	correlation within the	linear equation.	relative frequency of
	divide numbers in		 Compare lengths, areas 	context of the variables.	 Use graphs to find 	outcomes.
	standard form.	 Define the population in 	and volumes using ratio	 Draw a line of best fit by 	approximate roots of	• Use relative frequency as
		a sample and understand	notation and scale factors.	eye and use it to make	quadratic equations and	an estimate of probability.
	Algebraic Manipulation	the difference between a	 Apply the principles of 	predictions.	the approximate solution	 Use tables and grids to
		population and a sample.	similarity to calculate	 Interpolate and 	of two linear simultaneous	list the outcomes of single
	 Simplify algebraic 	 Understand what is 	unknown lengths in similar	extrapolate from data.	equations.	events and to calculate
	expressions by expanding	meant by simple random	figures.	 Identify an outlier on a 	 Know that the 	theoretical probabilities.
	a simple bracket.	sampling and stratified		scatter diagram.	coordinates of the points	 Use systematic listing
	 Expand products of two 	sampling.			of intersection of a curve	strategies.
	binomials.	 Interpret and construct 	Pythagoras' Theorem	Fractions and Decimals	and a straight line are the	 Use a two-circle Venn
	• Expand products of more	frequency tables, bar			solutions to the	diagram to enumerate sets
	than two binomials.	charts, pie charts and	 Know and apply 	 Recognise and use 	simultaneous equations	and use this to calculate
	 Factorise by taking out 	pictograms for categorical	Pythagoras' theorem	equivalence between	for that line and curve.	related probabilities.
	common factors.	data.	$(a^2 + b^2 = c^2)$ to find	fractions and mixed		 Use simple set notation
	 Factorise quadratic 	 Interpret and construct 	lengths in right angled	numbers.		to describe simple sets of
	expressions where the	vertical line charts for	triangles.	 Add, subtract, multiply 		numbers or objects.
	coefficient of x^2 is not 1.			and divide simple fractions		

 Complete the square for 	ungrouped, discrete	 Apply Pythagoras' 	including mixed numbers	Percentage Change	 Use tree diagrams to
a quadratic expression.	numerical data.	theorem in more complex	and negative fractions.		enumerate sets and to
 Substitute positive or 	 Interpret multiple and 	figures, including 3D	 Calculate a fraction of a 	 Calculate and simple 	record probabilities of
negative numbers into	composite bar charts.	shapes.	quantity including with	interest, for instance in	successive events.
simple and complex	 Calculate the mean, 		fractions greater than 1.	financial contexts.	 Use the addition law for
formulae, including those	mode, median and range	Trigonometry	 Simplify and manipulate 	 For compound interest 	mutually exclusive events.
involving powers, roots	from ungrouped data.		algebraic fractions.	and depreciation over a	
and algebraic fractions.	 Calculate estimates of 	 Know and apply 	 Express a simple fraction 	given interval, use	Constructions and Loci
	mean, mode and range	trigonometric ratios to find	as a terminating decimal	multipliers to solve	
Proofs and Formulae	from grouped data.	angles and lengths in right	or vice versa.	problems step-by-step.	 Use construction to find
		angled triangles.	 Use division to convert a 	 Express exponential 	the midpoint of a line
 Recognise the distinction 	Compound Units	 Know exact values of sin 	simple fraction to a	growth or decay as a	segment.
between an equation and		θ , cos θ and tan θ where θ	decimal.	formula.	 Construct the
an identity.	 Use and convert 	= 0°, 30°, 45°, 60°, 90°.	 Convert a recurring 	 Solve and interpret 	perpendicular bisector of a
 Use algebra to construct 	standard units of		decimal to an exact	answers in growth and	line segment.
mathematical arguments.	measurement for length	 Apply trigonometry for 	fraction.	decay problems.	 Construct the bisector of
 Change the subject of 	area, volume/capacity,	right-angled triangles	 Add, subtract and 		an angle.
formulae, where the	mass, time and money.	within more complex	multiply decimals including	Bearings and Scale	 Construct the
subject only appears once.	 Know and apply 	shapes, including 3D	decimals that are negative.	<u>Drawings</u>	perpendicular from a point
 Change the subject of 	speed = distance ÷ time.	figures.	 Without using a 		to a line.
formulae where the	 Know and apply 		calculator, divide a decimal	 Understand how to 	 Construct the
subject appears twice or	density = mass ÷ volume.		by a whole number or by	measure and construct	perpendicular to a line at a
where a power of	 Use and convert 		another decimal.	bearings.	point.
reciprocal of the subject	compound units in			 Understand how to work 	 Apply constructions
appears.	algebraic contexts.		Accuracy and Bounds	out bearings either from a	involving ruler and
				given diagram or from a	compasses to identify the
	Solving Linear Inequalities		 Use inequality notation 	worded problem.	loci of points. Include real
			to write down an error	 Use trigonometry and 	world problems.
	 Solve linear inequalities 		interval for a number or	bearings to solve	
	in one variable.		measurement rounded or	problems.	
	 Using the correct 		truncated to a given	 Use the scale of a map 	
	notation, represent		degree of accuracy.	and work with bearings.	
	solutions to inequalities on		 Calculate the upper and 	 Construct and interpret 	
	a number line.		lower bounds of	scale drawings.	
	 Solve linear inequalities 		calculations.		
	in two variables,		 Understand the 		
	representing the solution		difference between		
	set on a graph.		bounds of discrete and		
			continuous data.		

Strategies Indices and Standard Algebraic Solutions of Surds Organising, Presenting Simultaneous Equations	Circles, Spheres and
Form Equations and Analysing Data	<u>Pyramids</u>
Conditional Know when it is Know when to set up and 	
Knowledge• Apply the correct rules of• Construct a chain ofappropriate to leave• Design appropriatesolve simultaneous	 Present arguments and
indices. reasoning to justify the answers in exact form. tables to analyse data. equations in two variables.	proofs to solve problems
'I know• When and how to usesolution to an equation.• For a complex surd• Show clear chains of• Know when and how to	giving answers in terms of
when to' fractional and negative calculation, construct reasoning to present manipulate one or both	pi.
indices. • Solve area, volume and chains of reasoning to statistical arguments. equations in order to solve	 Make deductions and
• Know what methods to kinematics problems given show how to achieve a • Know when the a problem.	inferences and draw
follow when adding, in word form or in given result. interquartile range is used • Construct clear chains of	conclusions regarding
subtracting, multiplying diagrammatic contexts. • Make and use and why it can be more reasoning to solve	re-shaping solids assuming
and dividing with numbers connections between appropriate and simultaneous equations	no loss of volume.
in standard form. • Know when it is exact calculations and representative than other and interpret the answers,	• Given the volume or
• When answering appropriate to solve surds within different parts forms of spread. with justification.	surface area, work
problem solving and quadratic equations of mathematics.	backwards to find an
worded questions through factorisation, <u>Graphical Solutions to</u>	unknown
involving standard form, completing the square or Congruent and Similar Bivariate Data Equations	radius/diameter/height.
know when to apply the using the quadratic Shapes	
appropriate rule of formula. • Make deductions and • Know when to construct	Probability
arithmetic. • Know when to explain inferences and draw equations set in words or	
Data Collection and with reasoning whether conclusions, taking care to diagrams and plot	• Know when to use
Algebraic Manipulation Sampling shapes are congruent of recognise the limitations graphically to determine	different terminology and
similar. of those findings. solutions.	mathematical vocabulary
Understand the From a sample, infer Use similar shapes to Extrapolate and	when working through
difference between properties of populations translate non- interpolate data using a Percentage Change	probability problems.
expanding double brackets and distributions. mathematical contexts line of best fit and be	 Apply Venn diagrams
and expanding single • Recognise graphical into problems that can be aware of the limitations of • Express as a total	and tree diagrams to solve
brackets. misrepresentation, for solved. these techniques. percentage change the	probability problems in a
Understand how to fully instance through incorrect Interpret results in the effect of growth and	variety of mathematical
factorise an expression. scales and labels. <u>Pythagoras' Theorem</u> context of a given decay.	and non-mathematical
Understand when an problem. Apply either simple or	contexts.
expression will be <u>Compound Units</u> • Know whether to add or compound interest to a	
factorised into two subtract the squares of the Fractions and Decimals problem.	Constructions and Loci
brackets rather than one. • Know when different sides.	
units are appropriate • From the three sides of a • Use fractions and <u>Bearings and Scale</u>	 Justify loci using clear
Proofs and Formulae dependent on the context triangle, make a deduction decimals in a series of Drawings	mathematical reasoning.
of the question. about whether a triangle mathematical processes.	 Know when to solve
Understand how to has a right angle. • Know when it is more • Know when to draw a	problems using
rearrange formulae and • Make and use appropriate to leave diagram to help solve a	constructions, and which
when taking a factor of the connections between answers in either fraction problem involving	construction is the most
subject is necessary. similar and congruent or decimal form. bearings.	appropriate to use.
triangles, units of	

		 Solving Linear Inequalities Know when to solve inequalities involving mensuration and angle problems. 	 measurement, error intervals and bounds, estimation and rounding. Trigonometry Identify when to use the correct trigonometric ratio. From the three sides of a triangle, make deductions about whether the triangle includes all acute angles or one right angle or one obtuse angle. Know when it is most appropriate to apply either trigonometry or Pythagoras' theorem. 	 Accuracy and Bounds Dependent on whether the data is discrete or continuous, know when your answer must be an integer. Dependent on the context of the question, know when to use either the upper or lower bound. 	• Make connections between different parts of mathematics, for instance when using ratios and converting units.	
Key Questions	Indices and Standard Form	Algebraic Solutions of Equations	Surds	Organising, Presenting and Analysing Data	Simultaneous Equations 1) Solve the following	Circles, Spheres and Pyramids
	1) Evaluate 64^{3} 2) Simplify $3a^{2} \times 2a^{\frac{1}{2}}$	1) Solve $7(5 - x) = -4(x - 1)$ 2) Solve $3x^2 - 8x - 3 = 0$	2) Expand and simplify $(2 + \sqrt{6})(3 - \sqrt{6})$	a) Construct a cumulative frequency diagram for b) Estimate values for the	simultaneous equation: 4x + 3y = 20 3x + 5y = 24	1) The area of a circle is 34.8cm ² . Find the
	3) Write 0.000809 in standard form.	3) Either by using the	3) Rationalise the	upper quartile, median and lower quartile from	2) Solve the following	circle.
	4) Leaving your answer in standard form, work out $(3.6 \times 10^3) \div (9 \times 10^{-3})$	quadratic formula or by completing the square, solve $x^2 + 4x - 5 = 7$.	denominator of $\frac{1+\sqrt{5}}{\sqrt{5}-6}$	your diagram. c) Use this information to construct a box plot.	simultaneous equations: 3x = 2y + 6 $x^2 + y^2 = 20$	2) A cube, of side length 6cm, has the same volume as a sphere. Find the radius of the sphere.
	5) The diameter of the Moon is 3.5×10^3 km. The	Data Collection and Sampling	<u>Congruent and Similar</u> <u>Shapes</u>	Bivariate Data	3) Two numbers have a sum of 20 and a difference of 8. By forming and	Probability
	diameter of the Sun is 1.4×10^6 km. Calculate the ratio of the diameter of the Moon to the diameter of the Sun. Give your answer in the form 1: <i>n</i> .	Parker wants to take a random sample of people who live in his street. Explain what is meant by a random sample and describe a sampling	1) Find missing length DE	 a) Plot a scatter graph for b) Identify the outlier from your scatter graph. c) Draw a line of best fit onto your scatter graph. 	solving two equations, find the values of the two numbers.	1) Laura observed 20 cars and found that 3 of them were blue. Based on this evidence, if Laura were to observe another 100 cars, how many would she expect not to be blue?

Algebraic Manipulation	method which Parker		d) Estimate from your	Graphical Solutions to	
	could use.	2) DEF is an equilateral	line of best fit. Does this	Equations	2) At a restaurant there
1) Expand and simplify		triangle.	seem reliable?		are 3 options for starter, 3
4x - (3 - 2x).		D		1) By plotting y = 3x + 4	for a main course and 4 for
	Compound Units	\land	Fractions and Decimals	and $y = 4x - 2$, find the	dessert. Sam would like a
2) Expand and simplify				solution to simultaneous	2-course meal. How many
(x+3)(x-2)(x+4).	1) A car is travelling at		1) Express as a single	equations.	possible meal
	30 mph for 20 minutes.		fraction		combinations does he
3) Factorise $6x^2 + x - 2$.	How far does the car travel	F G E	1 4	By plotting the curve y =	have?
	in this time?	G lies of EF.	$\frac{1}{x+1} + \frac{1}{x-2}$	$x^2 + 6x - 4$ and the line y =	
4) Write $x^2 - 3x + 5$ in		DG is perpendicular to FE.	X+1 X-2	4x – 2, find the solutions to	3) Paul asked the 30
completed square form.	2) Convert 10 cm ³ into	Prove DFG is congruent to		the simultaneous	students in his class
	mm ³ .	DEG.	2) Convert the recurring	equations.	whether they liked tea and
5) Substitute $x = 3$ and			decimal 0.345 into a		coffee. 10 said they liked
y = -4 into the expression	3) Convert 15 mph into	Pythagoras' Theorem	fraction in its simplest		tea, 15 said they liked
$3y^2 - 4x - 3$	m/s.		form.	Percentage Change	coffee and 12 said they
		1) Find length BC.			liked neither.
6) Write an expression for	4) Material A has a density	A	Accuracy and Bounds	1) A car depreciates in	What is the probability a
the area of the following	of 5.8 g/cm ³ . Material B	Not drawn accurately		value by 3.2% each year	student chosen at random
snape:	has a density of 4.1 g/cm ³ .	20cm 6cm	1) A length has been	for 6 years. The car is	from the class likes both
1 yr	377g Of Material A and		recorded as 4.5cm correct	of the C th year How much	tea and coneer
	1.64 kg Of Material B Torrin	в	to the nearest mm.	did it cost originally?	
	density of Material C		interval		
2x - 3	density of Material C.	2) Find length AG.	interval.	2) A shop has a sale. In the	
	Solving Linear Inequalities	H G	2) A car is travelling at EQ	sale all items are reduced	
Proofs and Formulae	Solving Linear mequanties	E	2) A call is travelling at 50	by 15% In the last week of	
FIGUIS and Formulae	1) Solve the inequality	4cm	nearest 10 mph) for 3	the sale all items are	
Prove that the square of	5x - 6 < -7 and represent	D	hours (correct to the	reduced by a further 10%	Constructions and Loci
an odd number is always	your solution on a number	A 8cm B Scm	nearest hour) What is the	What is the overall	
odd	line.	Trigonomotry	shortest distance the car	percentage reduction?	For the rectangle ABCD
644.		Irigonometry	could have travelled?		shown on your worksheet,
	2) Solve the inequality	1) Find angle RAC		Bearings and Scale	find the region which is
	$14 < 3x + 5 \le 29$	I) FIND angle BAC.		Drawings	a) less than 3cm from B,
	and represent your	В			b) closer to B than C,
	solution on a number line.			1) The bearing of a ship	and
		10-11		from a lighthouse is 055°.	c) closer to AB than to BC.
		12cm		Work out the bearing of	
				the lighthouse from the	
				ship.	
		CLIAA			

			2) A cube is shown below. Find angle CAG. $\begin{array}{c} H \\ E \\ \hline \\ B \\ \hline \\ Scm \\ B \end{array}$		2) From town B, town A is 6 km due north and town C is 4.5 km due east. Calculate the bearing of A from C.	
Assessment Mini as: topics topic st	ssessment for each tudied	Mini assessments End of term tests	Mini assessment for each topic studied	Mini assessments End of term tests	Mini assessment for each topic studied	Mini assessments End of term tests
Cross curricular links/ Character Education Education In Scien is used particul (e.g. for in astro number lengths Algebra In Scien manipu rearran	s and Standard nce, standard form when working with ularly large numbers or mass and distance ophysics) and small ers (for mass and s in biology). aic Manipulation nce, algebraic ulation is used to nge key formulae.	Algebraic Solutions of Equations In Computing, algebra is used to form equations that create graphics. Data Collection and Sampling Sampling and data collection methods are reviewed regularly in Psychology. Compound Units Compound units are used frequently in Physics.	Pythagoras' Theorem and Trigonometry In Design Technology, Pythagoras' theorem and trigonometry are used to calculate distances and angles of elevation/depression.	Organising, Presenting and Analysing Data The ability to organise, present and analyse data is used in multiple subjects. This includes looking at statistics in Geography, collecting data in Biology and analysing data in Business and Economics. Fractions and Decimals In Design Technology, fractions are used when working with materials and also when scaling up/down recipes.	Percentage ChangeIn Geography, percentage calculations are used to make comparisons, for instance when looking at rainfall or comparing changes in population sizes.In Business and Economics, profit, loss, growth and decay are all represented as percentages.Bearings and Scale DrawingsIn Design Technology you need to be able to work with scale drawings.In Geography, you need to be able to work with scale on maps.	Circles, Spheres and Pyramids In Design Technology, working with area and volume will help when designing different objects and products.