Curriculum Map: Year 10 Mathematics (Higher tier pathway)

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Content Declarative knowledge ‘IKnow’	Indices and Standard Form - Index notation - Estimating powers and roots - Laws of indices - Writing numbers in standard form - Calculations with numbers in standard form Algebraic Manipulation - Simplifying expressions - Expanding brackets - Factorising expressions - Completing the square - Substitution Proofs and Formulae - Formulate algebraic expressions - Change the subject of a formula - Algebraic terminology and proofs	Algebraic Solutions of Equations - Solving linear equation with one unknown - Solving quadratic equations Data Collection and Sampling - Populations and samples - Averages and range - Construct charts for categorical data (frequency tables, bar charts, pie charts and pictograms) - Construct charts for ungrouped numerical data (vertical line charts) Compound Units - Convert between different units of measurement - Convert compound units (speed, density, pressure, rates of change and pricing) Solving Linear Inequalities - Solve inequalities with one unknown - Represent inequalities on a number line	Surds - Simplify expressions (including expanding brackets) with surds - Rationalise the denominator Congruent and Similar Shapes - Identify congruent triangles - Identify similar triangles - Compare lengths, areas and volumes using scale factors Pythagoras' Theorem - Find missing sides in right angled triangles - Apply Pythagoras' theorem in a 3D context Trigonometry - Find missing sides and angles in right angled triangles - Use trigonometry to solve problems - Exact trigonometric values	Organising, Presenting and Analysing Data - Time series graphs - Cumulative frequency - Box plots Bivariate Data - Scatter diagrams - Correlation - Lines of best fit Fractions and Decimals - Simplifying fractions and equivalent fractions - Fraction arithmetic - Algebraic fractions - Decimal arithmetic - Converting recurring decimals to fractions Accuracy and Bounds - Upper and lower bounds - Error intervals - Problem solving with upper and lower bounds	Simultaneous Equations - Linear simultaneous equations - Quadratic simultaneous equations - Forming and solving simultaneous equations Graphical Solutions to Equations - Solve linear equations graphically - Approximate roots of a curve with a straight line Percentage Change - Compound and simple interest - Exponential growth and decay Bearings and Scale Drawings - Measure and draw bearings - Calculate bearings - Construct and interpret scale drawings	Circles, Spheres and Pyramids - Area and circumference of circles - Sector area and arc length - Volume of cylinders, spheres and pyramids - Surface area of cylinders, spheres and pyramids Probability - Relative frequency - Sample spaces - Enumeration - Venn diagrams - Probability trees Constructions and Loci - Perpendicular and angle bisector - Perpendicular from a point to a line - Identify the loci of a set of points

- Complete the square for a quadratic expression.
- Substitute positive or negative numbers into simple and complex formulae, including those involving powers, roots and algebraic fractions.

Proofs and Formulae

- Recognise the distinction between an equation and an identity.
- Use algebra to construct mathematical arguments.
- Change the subject of formulae, where the subject only appears once.
- Change the subject of formulae where the subject appears twice or where a power of reciprocal of the subject appears.
ungrouped, discrete numerical data. - Interpret multiple and composite bar charts. - Calculate the mean, mode, median and range from ungrouped data. - Calculate estimates of mean, mode and range from grouped data.

Compound Units

- Use and convert
standard units of measurement for length area, volume/capacity, mass, time and money.
- Know and apply speed $=$ distance \div time.
- Know and apply density $=$ mass \div volume.
- Use and convert compound units in algebraic contexts.

Solving Linear Inequalities

- Solve linear inequalities in one variable.
- Using the correct notation, represent solutions to inequalities on a number line.
- Solve linear inequalities in two variables, representing the solution set on a graph.
- Apply Pythagoras' theorem in more complex figures, including 3D shapes.

Trigonometry

- Know and apply trigonometric ratios to find angles and lengths in right angled triangles.
- Know exact values of sin $\theta, \cos \theta$ and $\tan \theta$ where θ $=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$.
- Apply trigonometry for right-angled triangles within more complex shapes, including 3D figures.
including mixed numbers and negative fractions.
- Calculate a fraction of a quantity including with fractions greater than 1. - Simplify and manipulate algebraic fractions.
- Express a simple fraction as a terminating decimal or vice versa.
- Use division to convert a simple fraction to a decimal.
- Convert a recurring decimal to an exact
fraction.
- Add, subtract and multiply decimals including decimals that are negative.
- Without using a
calculator, divide a decimal
by a whole number or by another decimal.

Accuracy and Bounds

- Use inequality notation to write down an error interval for a number or measurement rounded or truncated to a given degree of accuracy.
- Calculate the upper and lower bounds of calculations.
- Understand the difference between bounds of discrete and continuous data.

Percentage Change

- Calculate and simple interest, for instance in financial contexts.
- For compound interest and depreciation over a given interval, use multipliers to solve problems step-by-step
- Express exponential growth or decay as a formula.
- Solve and interpret answers in growth and decay problems.

Bearings and Scale Drawings

- Understand how to measure and construct bearings.
- Understand how to work out bearings either from a given diagram or from a worded problem.
- Use trigonometry and bearings to solve problems.
- Use the scale of a map and work with bearings. - Construct and interpret scale drawings.
- Use tree diagrams to enumerate sets and to record probabilities of successive events.
- Use the addition law for mutually exclusive events.

Constructions and Loci

- Use construction to find the midpoint of a line segment.
- Construct the perpendicular bisector of a line segment.
- Construct the bisector of an angle.
- Construct the perpendicular from a point to a line.
- Construct the perpendicular to a line at a point.
- Apply constructions involving ruler and compasses to identify the loci of points. Include real world problems.

		Solving Linear Inequalities - Know when to solve inequalities involving mensuration and angle problems.	measurement, error intervals and bounds, estimation and rounding. Trigonometry - Identify when to use the correct trigonometric ratio. - From the three sides of a triangle, make deductions about whether the triangle includes all acute angles or one right angle or one obtuse angle. - Know when it is most appropriate to apply either trigonometry or Pythagoras' theorem.	Accuracy and Bounds - Dependent on whether the data is discrete or continuous, know when your answer must be an integer. - Dependent on the context of the question, know when to use either the upper or lower bound.	- Make connections between different parts of mathematics, for instance when using ratios and converting units.	
Key Questions	Indices and Standard Form 1) Evaluate $64^{\frac{2}{3}}$ 2) Simplify $3 a^{2} \times 2 a^{\frac{1}{2}}$ 3) Write 0.000809 in standard form. 4) Leaving your answer in standard form, work out $\left(3.6 \times 10^{3}\right) \div\left(9 \times 10^{-3}\right)$. 5) The diameter of the Moon is $3.5 \times 10^{3} \mathrm{~km}$. The diameter of the Sun is $1.4 \times 10^{6} \mathrm{~km}$. Calculate the ratio of the diameter of the Moon to the diameter of the Sun. Give your answer in the form 1: n.	Algebraic Solutions of Equations 1) Solve $7(5-x)=-4(x-1)$ 2) Solve $3 x^{2}-8 x-3=0$ 3) Either by using the quadratic formula or by completing the square, solve $x^{2}+4 x-5=7$. Data Collection and Sampling Parker wants to take a random sample of people who live in his street. Explain what is meant by a random sample and describe a sampling	Surds 1) Simplify $V 72$ 2) Expand and simplify $(2+\sqrt{ } 6)(3-v 6)$ 3) Rationalise the denominator of $\frac{1+\sqrt{5}}{\sqrt{5}-6}$ Congruent and Similar Shapes 1) Find missing length $D E$	Organising, Presenting and Analysing Data a) Construct a cumulative frequency diagram for b) Estimate values for the upper quartile, median and lower quartile from your diagram. c) Use this information to construct a box plot. Bivariate Data a) Plot a scatter graph for b) Identify the outlier from your scatter graph. c) Draw a line of best fit onto your scatter graph.	Simultaneous Equations 1) Solve the following simultaneous equation: $\begin{aligned} & 4 x+3 y=20 \\ & 3 x+5 y=24 \end{aligned}$ 2) Solve the following simultaneous equations: $\begin{aligned} & 3 x=2 y+6 \\ & x^{2}+y^{2}=20 \end{aligned}$ 3) Two numbers have a sum of 20 and a difference of 8 . By forming and solving two equations, find the values of the two numbers.	Circles, Spheres and Pyramids 1) The area of a circle is $34.8 \mathrm{~cm}^{2}$. Find the circumference of the circle. 2) A cube, of side length 6 cm , has the same volume as a sphere. Find the radius of the sphere. Probability 1) Laura observed 20 cars and found that 3 of them were blue. Based on this evidence, if Laura were to observe another 100 cars, how many would she expect not to be blue?

Algebraic Manipulation

1) Expand and simplify

$$
4 x-(3-2 x) .
$$

2) Expand and simplify $(x+3)(x-2)(x+4)$.
3) Factorise $6 x^{2}+x-2$.
4) Write $x^{2}-3 x+5$ in completed square form.
5) Substitute $x=3$ and $y=-4$ into the expression $3 y^{2}-4 x-3$
6) Write an expression for the area of the following shape:

Proofs and Formulae

Prove that the square of an odd number is always odd.
method which Parker could use.

Compound Units

1) A car is travelling at 30 mph for 20 minutes. How far does the car travel in this time?
2) Convert $10 \mathrm{~cm}^{3}$ into mm^{3}.
3) Convert 15 mph into m / s.
4) Material A has a density of $5.8 \mathrm{~g} / \mathrm{cm}^{3}$. Material B has a density of $4.1 \mathrm{~g} / \mathrm{cm}^{3}$. 377 g of Material A and 1.64 kg of Material B form Material C. Work out the density of Material C.

Solving Linear Inequalities

1) Solve the inequality $5 x-6<-7$ and represent your solution on a number line.
2) Solve the inequality
$14<3 x+5 \leq 29$
and represent your solution on a number line.
d) Estimate from your line of best fit. Does this seem reliable?

Fractions and Decimals

1) Express as a single fraction

$$
\frac{1}{x+1}+\frac{4}{x-2}
$$

DG is perpendicular to FE . Prove DFG is congruent to DEG.

Pythagoras' Theorem

1) Find length $B C$.

2) Find length $A G$.

Trigonometry

1) Find angle $B A C$.

Graphical Solutions to Equations

1) By plotting $y=3 x+4$ and $y=4 x-2$, find the solution to simultaneous equations.
2) By plotting the curve $y=$ $x^{2}+6 x-4$ and the line $y=$ $4 x-2$, find the solutions to the simultaneous equations.

Percentage Change

1) A car depreciates in value by 3.2% each year for 6 years. The car is valued at $£ 4000$ at the end of the $6^{\text {th }}$ year. How much did it cost originally?
2) A shop has a sale. In the sale all items are reduced by 15%. In the last week of the sale all items are reduced by a further 10%. What is the overall percentage reduction?

Bearings and Scale

 Drawings1) The bearing of a ship from a lighthouse is 055° Work out the bearing of the lighthouse from the ship.
2) At a restaurant there are 3 options for starter, 3 for a main course and 4 for dessert. Sam would like a 2-course meal. How many possible meal combinations does he have?
3) Paul asked the 30 students in his class whether they liked tea and coffee. 10 said they liked tea, 15 said they liked coffee and 12 said they liked neither. What is the probability a student chosen at random from the class likes both tea and coffee?

Constructions and Loci
For the rectangle $A B C D$ shown on your worksheet, find the region which is
a) less than 3 cm from B, b) closer to B than C, and
c) closer to $A B$ than to $B C$.

			2) A cube is shown below. Find angle CAG.		2) From town B, town A is 6 km due north and town C is 4.5 km due east. Calculate the bearing of A from C.	
Assessment topics	Mini assessment for each topic studied	Mini assessments End of term tests	Mini assessment for each topic studied	Mini assessments End of term tests	Mini assessment for each topic studied	Mini assessments End of term tests
Cross curricular links/ Character Education	Indices and Standard Form In Science, standard form is used when working with particularly large numbers (e.g. for mass and distance in astrophysics) and small numbers (for mass and lengths in biology). Algebraic Manipulation In Science, algebraic manipulation is used to rearrange key formulae.	Algebraic Solutions of Equations In Computing, algebra is used to form equations that create graphics. Data Collection and Sampling Sampling and data collection methods are reviewed regularly in Psychology. Compound Units Compound units are used frequently in Physics.	Pythagoras' Theorem and Trigonometry In Design Technology, Pythagoras' theorem and trigonometry are used to calculate distances and angles of elevation/depression.	Organising, Presenting and Analysing Data The ability to organise, present and analyse data is used in multiple subjects. This includes looking at statistics in Geography, collecting data in Biology and analysing data in Business and Economics. Fractions and Decimals In Design Technology, fractions are used when working with materials and also when scaling up/down recipes.	Percentage Change In Geography, percentage calculations are used to make comparisons, for instance when looking at rainfall or comparing changes in population sizes. In Business and Economics, profit, loss, growth and decay are all represented as percentages. Bearings and Scale Drawings In Design Technology you need to be able to work with scale drawings. In Geography, you need to be able to work with scale on maps.	Circles, Spheres and Pyramids In Design Technology, working with area and volume will help when designing different objects and products.

