Curriculum Map: Year 10 Mathematics (Foundation tier pathway)

		using a calculator Averages and Charts - Calculate the mean, mode, median and range from ungrouped data - Calculate estimates of mean, mode and range from grouped data - Interpret and construct frequency tables, bar charts, pie charts and pictograms for categorical data - Interpret and construct vertical line charts for ungrouped, discrete numerical data - Interpret multiple bar charts and composite bar charts	Proofs and Formulae - Recognise the distinction between an equation and an identity - Use algebra to construct arguments - Change the subject of formulae, where the subject only appears once	Accuracy and Bounds - Use inequality notation to write down an error interval for a number or measurement rounded or truncated to a given degree of accuracy - Calculate the upper and lower bounds of calculations - Understand the difference between the bounds of discrete data and continuous data Mensuration - Find the circumference and area of a circle - Find the arc length of a sector - Find the area of a sector - Find the radius/diameter of a circle given the arc length/area of a sector		Constructions and Loci - Use construct to find the midpoint of a line segment - Construct the perpendicular bisector of a line segment - Construct the bisector of an angle - Construct the perpendicular from a point to a line - Construct the perpendicular to a line at a point - Apply constructions using ruler and compasses to identify the loci of points, including for real world problems 2D and 3D Representations - Use geometric terms to describe 2D and 3D shapes - Represent solids using plans and elevations - Draw solids from plans and elevations
Strategies Conditional Knowledge ‘I know when to'	Indices and Standard Form - Apply the correct rules of indices - When and how to use fractional and negative indices - Know what methods to follow when adding, subtracting, multiplying and dividing with numbers	Algebraic Solutions of Equations - Construct a chain of reasoning to justify the solution to an equation - Solve area, volume and kinematics problems given in worded form or diagrammatic contexts - Know when it is appropriate to solve	Congruent and Similar Shapes - Know when to explain with reasoning whether shapes are congruent or similar - Use similar shapes to translate nonmathematical contexts into problems that can be analysed mathematically	Organising, Presenting and Analysing Data - Design appropriate tables to analyse data - Infer properties of populations and distributions from a sample - Show clear chains of reasoning to present statistical arguments	Simultaneous Equations - Know when to set up and solve simultaneous equations in two variables - Know when and how to manipulate one or both simultaneous equations in order to solve a problem - Construct clear chains of reasoning to solve simultaneous equations	Prisms - Make deductions and inferences and draw conclusions regarding re-shaping solids assuming no loss of volume - Given the volume or surface area, work backwards to find an unknown radius/diameter/height

in standard form

- Know when to apply the appropriate rules of arithmetic when answering problem solving and worded questions involving standard form

Algebraic Manipulation

- Understand the difference between expanding double brackets and expanding single brackets
- Understand how to fully
factorise an expression
- Understand when an expression will be factorised into two brackets rather than one
quadratic equations through factorisation or completing the square or using the quadratic formula

Fractions and Decimals

- Use fractions and decimals in a series of mathematical processes
- Know when it is more appropriate to leave answers in either fraction or decimal form.

Averages and Charts

- Recognise graphical misrepresentation, for instance through incorrect scales or labels

Pythagoras' Theorem

- Know whether to add or subtract the squares of the sides
- From the three side lengths of a triangle, make a deduction about whether a triangle contains a right angle
- Make and use connections between similar and congruent triangles, units of measurement, error intervals and bounds, estimation and rounding

Trigonometry

- Identify when to use the correct trigonometric ratio - By considering the three sides of a triangle, make deductions about whether a triangle includes all acute angles or one rightangle or one obtuse angle - Know and when it is most sensible to apply either trigonometry or Pythagoras' theorem

Proofs and Formulae

- Understand how to rearrange formulae and when taking a factor of the subject is necessary.

Bivariate Data

- Make deductions, inferences and draw conclusions taking care to recognise the limitations of those findings
- Extrapolate and interpolate data using a line of best fit and be aware of the limitations of these techniques
- Interpret results in the context of a given problem

Accuracy and Bounds

- Know when your answer must be an integer dependent on whether the data is discrete or continuous
- Know when to use either the upper or lower bound dependent on the context of the question

Mensuration

- Present arguments and proofs to solve problems giving answers in terms of pi
- Given the
area/circumference, work backwards to find an unknown radius/diameter
and interpret the answers, with justification.

Percentage Change

- Express the effect of successive growth and decay as an overall percentage change - Apply either simple or compound interest to a problem

Bearings and Scale Drawings

- Know when to draw a diagram to help solve a problem involving bearings
- Make connections between different parts of mathematics, for instance using ratios and converting units

Probability

- Know when to use different terminology and mathematical vocabulary when working through probability problems
- Apply Venn diagrams and tree diagrams to solve probability problems in a variety of mathematical and non-mathematical contexts

Constructions and Loci

- Justify loci using clear mathematical reasoning.
- Know when to solve problems using constructions, and how to determine which construction is the most appropriate to use

2D and 3D

Representations

- Know when to apply correct terminology to 2D and 3D shapes

Assessment topics	Mini assessment for each topic studied	Mini assessments End of term tests	Mini assessment for each topic studied	Mini assessments End of term tests	Mini assessment for each topic studied	Mini assessments End of term tests
Cross curricular links/ Character Education	Indices and Standard Form In Science, standard form is used when working with particularly large numbers (e.g. for mass and distance in astrophysics) and small numbers (for mass and lengths in biology). Algebraic Manipulation In Science, algebraic manipulation is used to rearrange key formulae.	Algebraic Solutions of Equations In Computing, algebra is used to form equations that create graphics. Data Collection and Sampling Sampling and data collection methods are reviewed regularly in Psychology. Compound Units Compound units are used frequently in Physics.	Pythagoras' Theorem and Trigonometry In Design Technology, Pythagoras' theorem and trigonometry are used to calculate distances and angles of elevation/depression.	Organising, Presenting and Analysing Data The ability to organise, present and analyse data is used in multiple subjects. This includes looking at statistics in Geography, collecting data in Biology and analysing data in Business and Economics. Fractions and Decimals In Design Technology, fractions are used when working with materials and also when scaling up/down recipes.	Percentage Change In Geography, percentage calculations are used to make comparisons, for instance when looking at rainfall or comparing changes in population sizes. In Business and Economics, profit, loss, growth and decay are all represented as percentages. Bearings and Scale Drawings In Design Technology you need to be able to work with scale drawings. In Geography, you need to be able to work with scale on maps.	Circles, Spheres and Pyramids In Design Technology, working with area and volume will help when designing different objects and products.

