Curriculum Map: Design \& Technology Year 10

|  | Autumn 1 Wooden Puzzle | Autumn 2 <br> Mini NEA - Iterative Design | Spring 1 <br> Mini NEA - Iterative Design | Spring 2 <br> Mini NEA - Iterative Design | Summer 1 <br> Mini NEA - Iterative Design | Summer 2 <br> GCSE NEA <br> 1.1 Investigation of needs and research <br> 1.2 Product specification |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Content Declarative knowledge ‘IKnow’ | 1.13 Performance characteristics of a wide range of materials, components and manufacturing processes, in order to be able to discriminate between them and select appropriately. <br> 1.14 Implications for designers and manufacturers of the following when developing designs and manufacturing products: - social, ethnic and economic groups - environmental, social and economic Issues <br> - 'Green Designs'. <br> - recycling and reusing <br> - Human capability. <br> - Cost of materials. <br> - Manufacturing capability. <br> 1.14.8 Environmental impact - life cycle analysis (LCA). | 7.1.1 When designing or modifying a product, students should be able to apply their knowledge and understanding of timbers, components and manufacturing processes. <br> 7.2 To apply knowledge and understanding of the advantages, disadvantages and applications of the following, in order to be able to discriminate between them and select appropriately: <br> - Natural timbers hardwoods <br> - Natural timbers <br> - Manufactured timber <br> - Sources and origins <br> - Physical characteristics | 7.2 To apply knowledge and understanding of the advantages, disadvantages and applications of the following, in order to be able to discriminate between them and select appropriately: <br> - Working properties <br> - Social footprint <br> - Ecological footprint <br> 7.3 The influence of the following factors when selecting materials for a specific application: <br> - Aesthetic factors <br> - Environmental factors <br> - Availability factors <br> - Cost factors <br> - Social factors <br> - Cultural and ethical factors <br> 7.4 An awareness of the influence of forces and stresses that act on materials and the methods that can be | 7.6 Application, advantages and disadvantages, of a range of processes, scales of production and techniques when manufacturing products, in order to be able to discriminate between them and select appropriately for use. <br> 7.7 Application, advantages and disadvantages, of the following specialist techniques when manufacturing products, in order to be able to discriminate between them and select appropriately for use: <br> - Tools and equipment <br> - Shaping | 7.7 Application, advantages and disadvantages, of the following specialist techniques when manufacturing products, in order to be able to discriminate between them and select appropriately for use: <br> - Fabricating/constructing <br> - Assembling <br> 7.8 Application, advantages and disadvantages of finishing techniques and methods of preservation, in order to be able to discriminate between them and select appropriately for use. | 1.1a The needs of the end user. <br> 1.1b A design problem from the context provided and a need for a product that could solve the problem. |


|  | 1.15 Strategies, techniques and approaches employed when investigating and analysing the work of others. <br> 1.16 Strategies, techniques and approaches employed when generating design ideas. <br> Understand the hazards and control measures associated with a range of different tools and equipment (Timbers). <br> 3.1b The selection and application of: <br> a materials <br> b range of tools, including marking-out tools, hand tools and machinery c range of techniques f surface treatments and finishes used in the manufacture of the prototype. |  | employed to resist them. <br> 7.5 To apply knowledge and understanding of the advantages, disadvantages and applications of different forms/sizes of materials, in order to be able to discriminate between them and select appropriately. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Skills <br> Procedural <br> Knowledge <br> ‘I know how to’ | Demonstrate safe and skilful use of a range of tools. <br> Manufacture a highquality functioning product. | Identify design context <br> Discuss what makes 'good design’ Describe how products are developed using an iterative design process Consider a range of possible design briefs for this project. | Design \& Prototype Develop your design ideas using models, sketches and prototypes Discover the limitations of the components you will work with through experimentation | Develop, test, evaluate <br> Practice modelling and prototyping skills Develop the aesthetics and form of your design to appeal to the user <br> Test and evaluate your design based on feedback Generate refined models and prototypes | 1.1c Investigate existing products to inform the product specification for the prototype, from past and present designers. <br> 1.2b Production of a product specification that includes statements |


|  | Demonstrate a sustained high degree of safe working practice for self and others. <br> Produce a prototype showing a wide range of making skills with precision and accuracy. <br> Accurately assemble and finished the prototype to a high quality. | Suggest a possible design brief Define the following terms: aesthetics, form, ergonomics Generate a range of suitable design briefs for the project <br> Model, test, evaluate <br> Experiment with the different ways light and lighting can be used Generate a range of ideas through sketching and modelling, testing and evaluating Generate a range of ideas through sketching and modelling, testing and evaluating Demonstrate an understanding of ergonomics Describe how products are developed using an iterative design process | Fit components into models <br> Develop the aesthetics and form of your design to appeal to the user Apply experiments with lighting to design work |  | that are technical, measurable and justified, and include consideration of: a form <br> b function <br> c user requirements <br> d performance <br> requirements <br> e material and <br> component <br> requirements <br> f scale of production <br> g cost <br> h sustainability <br> i performance requirements. <br> 1.2c Identify criteria, which will be used to evaluate the success of the prototype. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Strategies <br> Conditional <br> Knowledge <br> 'I know when to’ | Apply a comprehensive understanding of tools and equipment to select the appropriate tool for the task (Timbers). | Use the iterative design process to make creative leaps. | Develop products through the iterative design process | Develop, test and evaluate design ideas through various media <br> Test and evaluate your design | 1.1d Carry out a range of research strategies to gather relevant information, to inform the design specification for the prototype, including: <br> a market research b research into the context in which the prototype will be used c research into other possible materials |


|  |  |  |  |  | d any sustainability issues that will be considered relevant to the intended prototype. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Key Questions | How can specialist tools be used to mark out and manufacture a highquality product with accuracy and precision? | How can iterative design strategies be used to identify a context? <br> How can iterative design strategies be used to generate creative ideas? | How can iterative design strategies be used to design and develop a prototype? | How can iterative design strategies be used to develop, test and evaluate a product? | What is a design context and how does this influence the outcomes of design practice? |
| Assessment topics | AO4 Core Technical Skills | AO1 Investigate, AO2 Design \& Prototype, AO3 Analyse and Evaluate, AO4 Core Technical Skills | AO1 Investigate, AO2 Design \& Prototype, AO3 Analyse and Evaluate, AO4 Core Technical Skills | AO2 Design \& Prototype, AO3 Analyse and Evaluate, AO4 Core Technical Skills | AO1 Investigate, AO3 Analyse and Evaluate |
| Cross curricular links/Character Education | Health and Safety Developing a working knowledge of safety. <br> Maths <br> - Accuracy and precision <br> - Arithmetic and numerical computation - Geometry and trigonometry | Art and Design <br> - The characteristics, properties and effects of using different media, materials, techniques and processes, and the ways in which they can be used creatively. <br> - Developing their ideas through investigations informed by selecting and critically analysing sources. | Maths <br> - Arithmetic and numerical <br> - Geometry and trigonom <br> Science <br> - Use scientific vocabulary <br> - Using materials <br> Art and Design <br> - Refining their ideas as work materials, techniques and <br> Computer Science <br> - Think creatively, innovati <br> Science <br> - Using materials | computation try <br> terminology and definitions <br> rk progresses through experimenting with media, processes. <br> vely, analytically, logically and critically. | Maths <br> - Arithmetic and numerical computation - Handling data <br> Business <br> - The impact of ethical and environmental considerations on businesses, including sustainability. <br> Geography <br> - Effective presentation, communication and evaluation of material. |
|  |  | Cognitive skills <br> - Problem solving <br> - Systems thinking - decision making and reasoning. <br> - Critical thinking -analysing, synthesising and reasoning skills. <br> - ICT literacy <br> - Communication skills <br> - Collaborative problem solving |  |  |  |


|  |  | $\bullet$ Adaptability |
| :--- | :--- | :--- |
|  | $\bullet$ Self-management and self-development |  |

